When running the C "coeff" program the following output will be shown (if debug flag set to true).
function readtable
==================
t= -40.00 r=45000.00
t= -35.00 r=35250.00
t= -30.00 r=27840.00
t= -25.00 r=22160.00
t= -20.00 r=17780.00
t= -15.00 r=14370.00
t= -10.00 r=11690.00
t= -5.00 r= 9580.00
t= 0.00 r= 7900.00
t= 5.00 r= 6560.00
t= 10.00 r= 5480.00
t= 15.00 r= 4600.00
t= 20.00 r= 3890.00
t= 25.00 r= 3300.00
t= 30.00 r= 2820.00
t= 35.00 r= 2420.00
t= 40.00 r= 2080.00
t= 45.00 r= 1800.00
t= 50.00 r= 1566.00
t= 55.00 r= 1367.00
t= 60.00 r= 1198.00
t= 65.00 r= 1055.00
t= 70.00 r= 930.00
t= 75.00 r= 824.00
t= 80.00 r= 732.00
t= 85.00 r= 653.00
t= 90.00 r= 585.00
t= 95.00 r= 525.00
t= 100.00 r= 472.00
t= 105.00 r= 426.00
t= 110.00 r= 386.00
t= 115.00 r= 350.00
t= 120.00 r= 318.00
t= 125.00 r= 290.00
t= 130.00 r= 265.00
t= 135.00 r= 243.00
t= 140.00 r= 223.00
t= 145.00 r= 205.00
t= 150.00 r= 189.00
x= 10.71 y= 0.0043
x= 10.47 y= 0.0042
x= 10.23 y= 0.0041
x= 10.01 y= 0.0040
x= 9.79 y= 0.0040
x= 9.57 y= 0.0039
x= 9.37 y= 0.0038
x= 9.17 y= 0.0037
x= 8.97 y= 0.0037
x= 8.79 y= 0.0036
x= 8.61 y= 0.0035
x= 8.43 y= 0.0035
x= 8.27 y= 0.0034
x= 8.10 y= 0.0034
x= 7.94 y= 0.0033
x= 7.79 y= 0.0032
x= 7.64 y= 0.0032
x= 7.50 y= 0.0031
x= 7.36 y= 0.0031
x= 7.22 y= 0.0030
x= 7.09 y= 0.0030
x= 6.96 y= 0.0030
x= 6.84 y= 0.0029
x= 6.71 y= 0.0029
x= 6.60 y= 0.0028
x= 6.48 y= 0.0028
x= 6.37 y= 0.0028
x= 6.26 y= 0.0027
x= 6.16 y= 0.0027
x= 6.05 y= 0.0026
x= 5.96 y= 0.0026
x= 5.86 y= 0.0026
x= 5.76 y= 0.0025
x= 5.67 y= 0.0025
x= 5.58 y= 0.0025
x= 5.49 y= 0.0025
x= 5.41 y= 0.0024
x= 5.32 y= 0.0024
x= 5.24 y= 0.0024
function orthonormal
====================
Evaluating polynom number 0
Polynom 0: 0.160128 0.000000 0.000000 0.000000
Evaluating polynom number 1
Polynom 1: -0.750248 0.100289 0.000000 0.000000
Evaluating polynom number 2
Polynom 2: 4.017999 -1.076574 0.068971 0.000000
Evaluating polynom number 3
Polynom 3: -21.908064 8.796946 -1.145884 0.048476
Testing orthonormal base
1.000000000000000
-0.000000000000002 1.000000000000000
0.000000000000025 -0.000000000000001 1.000000000000000
-0.000000000000165 0.000000000000012 -0.000000000000007 1.000000000000002
function approx
===============
Approximating with polynom number 0
Approximating with polynom number 1
Approximating with polynom number 2
Approximating with polynom number 3
Steinhart-Hart coefficients
a[0] = 4.524024725919526e-004
a[1] = 3.934722516618191e-004
a[2] = -7.642331765196044e-006
a[3] = 4.048572707661904e-007
function testresult
===================
-39.989 45000.0 -40.0
-35.001 35250.0 -35.0
-30.007 27840.0 -30.0
-25.007 22160.0 -25.0
-20.011 17780.0 -20.0
-15.012 14370.0 -15.0
-9.997 11690.0 -10.0
-4.994 9580.0 -5.0
0.016 7900.0 -0.0
5.009 6560.0 5.0
10.002 5480.0 10.0
15.022 4600.0 15.0
19.986 3890.0 20.0
25.014 3300.0 25.0
29.972 2820.0 30.0
34.950 2420.0 35.0
40.031 2080.0 40.0
45.036 1800.0 45.0
50.004 1566.0 50.0
54.999 1367.0 55.0
59.995 1198.0 60.0
64.949 1055.0 65.0
70.010 930.0 70.0
75.007 824.0 75.0
80.038 732.0 80.0
85.029 653.0 85.0
89.969 585.0 90.0
94.965 525.0 95.0
100.014 472.0 100.0
105.012 426.0 105.0
109.947 386.0 110.0
114.978 350.0 115.0
120.036 318.0 120.0
125.025 290.0 125.0
130.032 265.0 130.0
134.967 243.0 135.0
139.982 223.0 140.0
145.019 205.0 145.0
150.003 189.0 150.0
Maximal error=0.05268 at temperature=110.0
<-- Back